Robotics with the XBC

Controller
Session 3

Instructor: David
Culp

Emaill:

culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

Learning Goals

A The student will learn about
variables and data types In
Interactive C, analog sensors, for-
next loops, and IC library functions.

A review of where we have

beene

ABasi ¢c C programming:¢
A All C programs begin execution at the
Amai no functi on.

A Blocks of code are contained in curly
braces.

AEx ampl e é
void main()

{
printf(AHell o XBCOo0)

+

Slightly more advanced C
programming

A Looping
AWIi th an o1 féthenod6 br a

ATakes the form:
If (<expression)
<statementl>
else <statement>

<expression> = a test

<statement-1> = a block of statements to execute
If <expression> is TRUE

else <statement-2> = an optional group of
statements to execute if <expression> is FALSE.

Whil e | oopse

A While loops are the basic looping
structure in C.

A Takes the form:

A while (<expressior)
<statement
A (<expressior) = a test

~

A <statement> =C program statements to execute If
(<expression) evaluates to TRUE

AMul ti ple statements can |

A r eal Bot bal |

A The students robot had to drive forward
only a certain distance as quickly as
possible.

A An Ingenious switch and string device was
used.

A String was tied off to the table.

A When string became taught it activated a
switch, C code detected this and shut the
motors off.

A real Botball example
continuedé@é

while (digital(10) == 0) // is the switch triggered
{
fd(0);
fd(2);
by
ao(); // if yes stop

If T Then and while

Vd

exampl eé

void main()

1
while(1)
1
If (a_button() == 1)
1
printf(AA BUTTON PR

}// end if

}// end while

}// end main

Digital sensors

A Return either a O or a 1.
A Only two states.

A Buttons and touch switches are the
most common.

A Accessed with the digital() function.
A digital(<port#);
APort# = ports 8-15
AReturnsaOoral

Motor control

A motor(<motor 7>, <speea>)
A ao();

A Turn all motors off
A fd(<motor #);

ATurn on motor _
A bk(<motor #>),

ATurn on motor _
A off(<motor #>);

A Turn off motor_#

#

#

10

Analog sensors

A Analog sensors return a range of values.

A Examples:
A Light sensors
A Range finding sensors
A Temperature sensors
A Pressure sensors
A Voltage sensors
A Sound level sensors

11

Analog sensor resolution

A The resolution of an analog sensor
IS the smallest change it can detect
IN the quantity that It iIs measuring.

A Analog sensors return a number
defined by the number of bits of
resolution.

A For example, an 8 bit sensor can
return 256 different results (0-255).

12

Anal og functi on

> >

Extremely simple to use In Interactive C.

Function definitions as they appear in the IC
manual:
A Int analog (int p)

A Returns an 8 bit (0-255) reading.

A p = port number

A int analogl2 (int p)

A Returns a 12 bit (0-4095) reading.

A p = port number
Ports O and 1 are floating (high impedance input used with
active sensors such as IR range finder which output a
positive voltage less than 5 volts)

Ports2-6 have-uppulrlesi stors to 5 vo
sSensors.

YOU SHOULD NOT CONNECT TO ANALOG PORT 7!

A Reserved for battery voltage monitoring.

A power level() returns a floating pt. voltage value P

Using the interaction
window

A Plug an infrared (IR) range finding sensor into
analog port 1. w/

ASometi mes called an AETO0O sens.
A Returns a number relatedto the range to the nearest
object.

A Sends an IR beam out and measures the angle of the
reflected beam.

A Is insensitive to the color of the target object
AClick on the I C tab called

14

Using the interaction
window

A At the bottom of the interaction window Is a
place to type IC commands.

A Make certain your XBC is plugged in and turned
on.

A Hold the IR range finding sensor about 10-12
Inches from an object.

Type fnanalog(1l); 0 into the
and press return.

IC should return an 8 bit number.

Experiment by holding the sensor at different
ranges.

Also try the analogl2() function.

>

> >

>

15

IR Range Finder
Continuedeée

A Notice the number is not a range and that
the response is not quite linear.

A Low values indicate a large distance (d)

A Result Is approximately 1/(d)"™2 and is
useable only up to 4 inches

A Objects closer than 4 inches will appear
to be farther away.

16

A program that constantly
fHelieliolmithistHtHRTTTE HE IS

void main()
{
while(1)
{
display clear();
printf("Range value: %d", analog(1));
sleep(.25);

by
by

17

What is with the weird
Nprintfo staten

A printf Is a whole lesson latter in the
course.

A In our case the line:
printf("Range value: %d", analog(1));

Simply prints the results
function call.

A %d is a place holder for that number. It tells
the compiler AHey, an 1 nt
to be printed I n this spc

18

A short assignment

A Modify the previous program so that a
value is only printed to the screen Iif the
user presses the nao b
Gameboy.

A Hint T most of the program will remain
the same.

A HiInt 1 You only need to add something
just before the display clear() function.

A Hint 1T we learned about It last session
and In our review today.

* See solution at end 19

Variables and Data Types

AVaril abl es are npl ace nh
hold data.

A Think of them as boxes that can hold
iInformation.

A We can change and access that
Information.

A In C you MUST tell the compiler what
type of information you wish to store in a
variable.

20

Data types in C.

A 16 - bit Integers

A 16-bit integers are signified by the type
Indicator int . They are signed integers,
and may be valued from -32,768 to
+32,767 decimal.

A 32 -Dbit Integers

A 32-bit integers are signified by the type
Indicator long . They are signed integers,
and may be valued from -2,147,483,648 to
+2,147,483,647 decimal.

21

More Data Types

A 32 -Dbit Floating Point Numbers

Floating point numbers are signified by the type
Indicator float . They have approximately seven
decimal digits of precision and are valued from
about 10™-38 to 10™38.

A 8-Dbit Characters

Characters are an 8-bit number signified by the type
iIndicator char . A character's value typically
represents a printable symbol using the standard
ASCII character code, but this is not necessary;
characters can be used to refer to arbitrary 8-bit
numbers.

22

More on variables

A All variables MUST have a name.
A The name should be descriptive
A Names are case sensitive

A Underscore character allowed
A Usually used to separate words
A range_to object

A Letters, numbers and the underscore may be
used, but may not start with a number

AC keywords such as 1 f, wl
be used as names

A Must be declared at the top level of a block.

23

An example of using
vari abl esé

void main()
{ /I Calibrating the IR range finder
float distance;
float max_squared = 200.0;
while(b_button() == 0)
{

distance = sqgrt(max_squared/(float)analog(1));

display_clear();
printf("Range: %f", distance);
sleep(.25);
}
}

24

Things to notice

A —

A The variables were declared at the
TOP of main.

A Each variable had a descriptive
name.

A We can use variables to store the
return Information from functions.

25

Variable scope

AAIl | varil abl es have
area in which they take precedence.
A If declared within a function or as an

argument to a function it is local to that
function and not available outside of it.

A If declared outside of a function then it
IS global and available to all functions.

A Local variables take precedence If a
local and global variable have the same
name.

26

i

Variable scope example.

// These variables are global...
int a=10;
Int b=20;
iInt c=30;

void main()

{

int c=100; // This variable is local
int answer; // so is this one

answer = a + b + c;
printf("Answer = %d", answer);

//prints 130 because it uses the LOCAL copy of c.
by

27

Things to notioc

A Two variables had the same name.

A Int ¢ was declared globally outside of
main.

A Int c was also declared locally inside of
main

A The copy of c that was local to main
was used In the calculation

28

Special notes on using the
LONG data type.

A If a number is defined as LONG then the character L
must appear at the end to tell the compiler this is a
special LONG integer.

A For example, this does not work:
void main()
{
long result;
result = result + 1000;
¥
A This does:
void main()
{
long result;
result = result + 1000L;

¥

29

More on LONG data types

A Only basic arithmetic and
comparison operations are allowed.

A Bitwise and boolean operations and
division are not supported.

30

For-next | oopse

A The syntax of a for loop is the following:
A for (<exprl>;<expr2>;<expr3>)

<statemernt

A <expr-1I>is an assignment

A <expr-2>is a relational expression

A <expr-3>is an increment or decrement of some
manner

A <statemernt Is a group of C statements to be
executed each time through the loop if <expr-2>
evaluates to TRUE.

31

Example of counting to
100e

void main()
{
Int count;
for (count = O;count <=100; count++)
{
display clear();
printf("%od", count);
sleep(.1);
}// end the for loop

32

A more practi ca

A The following program will smoothly and slowly position a servo.
void main()
{

Int current_position;

int desired_position=128;

enable servos();

for (current_position = O;current_position<= desired_position;
current_position+=5)

{
display_clear();
set_servo_position(0,current_position);
printf("%od", current_position);
sleep(.1);
}// end the for loop

}

33

IC library functions

A IC has many built in functions called
library functions.

A How to find the library functions in
the I1C manual.

A Reading the IC library files.

34

Project assignment

> >

>

> >

>

Mount two IR distance sensors on your robot.

Place one on the left plugged into port O and one
on the right plugged into port 1.

When either IR sensor senses something within
6 inches it should back up and turn away.

Use variables in the program.

Keep track of the number
and print that to the screen.

The user should be able to stop the program by
pressing the fiao button.

35

o

void main()

{// Plug the left motor into port 2 i the right motor into port 0
int left_hits; // keeps track of the number of hits on each side
int right_hits;

sleep(3.0);
while(a_button() == 0)
{
fd(0);// get us going forward
fd(2);

//print the number of hits on each side
display_clear();

printf("Left hits: %d\n", left_hits);
printf("Right hits: %d\n", right_hits);

if(analog(0) > 200) // is something close to the left side?
{
left_hits++; // increment our left hit count
bk(0); // back up
bk(2);
sleep(.5);
fd(2); // turn right
sleep(.5);
}// end if

if(analog(1) > 200) // is something close to the right side?
{

right_hits++; // increment our right hit count
bk(0); // back up
bk(2);
sleep(.5);
fd(0); // turn left
sleep(.5);

Y/ /end if

}// end while
} // end main

36

Solution to OA Sh-olR't
sensor readings when A button Pressed

void main()
{
while(1)
{
If(a_button()==1){
display clear();
printf("Range value: %d", analog(1));
sleep(.25);

}
}

37

